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Abstract

Objective: In malnutrition both the GH–IGF and reproductive axes are greatly affected. Because the
actions of IGF and sex steroids are inter-dependent in many tissues, we have examined how
ovariectomy modulates the response of the systemic IGF system to undernutrition.
Design and methods: Peripubertal (30 days of age) female rats were either sham operated or
ovariectomized. Five days later half of each group was submitted to a protein-caloric restriction
diet. All rats were killed at 60 days of age.
Results: Growth was decreased in all rats submitted to calorie restriction and this was consistent with
a decrease in circulating IGF-I concentrations and liver IGF-I mRNA expression. While in normally fed
rats ovariectomy had no significant effect on serum IGF-I concentrations, ovariectomized and under-
fed rats had significantly higher levels than intact underfed rats. In undernourished rats, serum
IGF-binding proteins (IGFBP)-1, -2 and -3 concentrations were significantly reduced and this was
not modified by ovariectomy. In contrast, liver mRNA concentrations of IGFBP-1 and -2 were
increased and IGFBP-3 unchanged in intact undernourished animals, suggesting that undernutrition
could be affecting the proteolysis of these binding proteins, and this response was significantly
modulated by ovariectomy.
Conclusion: These results indicate that the presence of circulating ovarian hormones significantly
affects the response of the IGF system to undernutrition.
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Introduction

In clinical situations of undernutrition, including
anorexia nervosa, poorly controlled diabetes mellitus
and celiac disease, as well as in experimentally induced
undernutrition, the insulin-like growth factor (IGF) axis
is markedly altered (1–11). Serum IGF-I concen-
trations, as well as those of some IGF-binding proteins
(IGFBPs), are regulated by growth hormone (GH). How-
ever, in malnutrition circulating IGF-I concentrations
can be dramatically reduced even when GH secretion
is increased or unaltered (2). Hence, in extreme cases
of malnutrition the role of GH as the primary regulator
of circulating IGF-I concentrations is diminished, but
what factors become important in the control of the
IGF-I system is less clear.

In severe undernutrition the reproductive axis is
also suppressed, with markedly reduced levels of circu-
lating sex steroids (12, 13). Indeed, one of the diag-
nostic features of anorexia nervosa is amenorrhea in

post-pubertal females (14). After nutritional therapy
and substantial weight recuperation, or even attain-
ment of a normal body mass index, menstruation
may not be spontaneous and estrogen therapy may
be required. Likewise, after adequate nutrition and
significant weight gain circulating IGF-I and IGFBP
concentrations do not immediately return to normal
(2, 7), suggesting a possible interaction of these two
systems.

Sex steroids and IGF-I interact at different levels in a
variety of tissues and sufficient levels of both hormones
may be necessary for the normal physiological func-
tioning of some systems (15 –21). In some tissues
IGF-I modulates estrogen receptor levels and estrogens
regulate the production of IGF-I, its receptors and the
IGFBPs (17, 19–21). In addition, synergistic effects
and cross-reactivity, with one factor activating or
requiring the presence of receptors of the other, have
been demonstrated in certain cell types (16, 18). Sex
steroids and IGF-I have also been reported to have

European Journal of Endocrinology (2002) 147 417–424 ISSN 0804-4643

q 2002 Society of the European Journal of Endocrinology Online version via http://www.eje.org



numerous points of interaction in their intracellular
signaling mechanisms in many tissues (5, 22). Hence,
the physiological response of one system may depend,
at least in part, upon the condition or hormone levels
of the other system.

Most studies analyzing the IGF-I system in under-
nutrition have been done in adult intact animals.
Since sex steroid levels are also modulated in under-
nutrition, we hypothesized that this may be involved
with the changes occurring in the IGF system. In this
study we have examined whether the absence of
ovarian hormones modulates the known effects of
undernutrition on the circulating IGF-I system.

Materials and methods

Animals

Female Wistar rats, bred in our animal facilities and
housed under controlled temperature and an artificial
12 h light:12 h darkness cycle, were used in this
study. Rats were freely fed a standard laboratory diet
(19 g protein, 56 g carbohydrate, 3.5 g lipid, 4.5 g
cellulose/100 g, plus salt and vitamin mixtures) and
water. Trunk blood was harvested after decapitation
and sera stored at 280 8C until assayed. Livers were
frozen in liquid nitrogen.

European Community regulations for the use of
animals for experimental models and other scientific
purposes were followed. In addition, all experiments
were conducted in accordance with the principles and
procedures outlined in the National Institutes of
Health (NIH, Bethesda, MD, USA) guide for the care
and use of experimental animals.

Experimental groups

On postnatal day 30, half of the rats were ovari-
ectomized and half sham operated. Five days later
these two groups were divided into two subgroups.
One subgroup was fed normally and the other sub-
mitted to a calorie-restricted diet that corresponded to
approximately a 65% reduction in intake. All rats
were killed on postnatal day 60. The groups are
represented in Table 1.

Serum IGF-I assay

The method for IGF-I RIA has been previously described
(23). Before IGF determination serum IGFBPs were
removed by standard acid-gel filtration. Standards
and samples were assayed in triplicate. The intra- and
inter-assay coefficients of variation were 8.0 and
12.4% respectively. Interference of IGF-II in the assay
was 11.7% and data were corrected accordingly.

Western ligand blotting

Western ligand blots were performed as previously
described (5, 23). Briefly, sera were diluted in sample
buffer (Tris –HCl, 0.625 mol/l, pH 6.8; 10% (v/v)
glycerol; 2% SDs and 0.0125% bromophenol blue)
and 2.5ml serum were submitted to SDS-PAGE under
non-reducing conditions (to prevent denaturation of
IGFBPs) on a 10% polyacrylamide gel. After electro-
transfer to nitrocellulose, the membranes were
incubated with 125I-labeled IGF-II (106 c.p.m.) for
20 h at 4 8C and autoradiographed against Hyperfilm
MP between intensifier screens at 270 8C. Auto-
radiographs were quantified by two-dimensional
densitometry using a Personal Densitometer (Molecular
Dynamics, Sunnydale, CA, USA). Na125I and the
Hyperfilm MP were purchased from Amersham
(Amersham Ibérica SA, Madrid, Spain).

Preparation of RNA

Total RNA was prepared by homogenization of livers in
guanidinium thiocyanate as originally described (24).
Samples were electrophoresed through 1% agarose –
2.2 mol/l formaldehyde gels and stained with ethidium
bromide in order to visualize the 28S and 18S ribo-
somal RNA and confirm the integrity of the RNA and
normalize the quantity of RNA in the different lanes.

Riboprobes

Rat IGF-I and IGFBP-1, -2 and -3 cDNAs were kindly
provided by Drs D T Roberts and D LeRoith (NIH).
Rat IGF-I cDNA, ligated into a pGEM-3 plasmid, was
linearized with HindIII and an antisense riboprobe
was produced by using T7 RNA polymerase. Use of
this riboprobe resulted in two protected fragments of
224 (Ia) and 386 (Ib) bases. The rat IGFBP-1 cDNA,
ligated into a pGEM-3 plasmid, was linearized with
HindIII and incubated with T7 RNA polymerase to
generate an antisense riboprobe that protected two
fragments of 300 and 700 bases. Rat IGFBP-2 cDNA,
ligated into a pGEM-4Z plasmid (Promega Biotech,
Madison, WI, USA), was linearized with HindIII and
incubated with SP6 RNA polymerase to generate a
550 base antisense riboprobe devoid of pGEM-4Z
complementary sequences. The rat IGFBP-3 cDNA,
ligated into a pGEM-4Z plasmid, was linearized with

Table 1 Experimental groups. OVX ¼ ovariectomized. All animals
were killed at 60 days of age.

Group Treatment (day 30) Nutrition (starting day 35)

F Sham Fed normally
OVX+F OVX Fed normally
U Sham Undernourished
OVX+U OVX Undernourished
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AccI and transcribed with T7 RNA polymerase to
generate a 343 base antisense riboprobe. The above
riboprobes were synthesized with [32P]UTP (Nuclear
Ibérica SA, Madrid, Spain). The riboprobe Gemini II
Core System (Promega) was used for the generation
of the RNA probes.

Solution hybridization/RNAse protection
assay

Solution hybridization/RNase protection assays were
performed as previously described (5, 25). Auto-
radiography was performed at 270 8C against
Hyperfilm MP between intensifying screens. Bands
representing protected probe fragments were quantified
using a Molecular Dynamics scanning densitometer
and accompanying software. RNase A and T1 were
purchased from Boehringer Mannheim.

Statistical analysis

All data are presented as means^S.D. Statistical com-
parisons were performed by one-way ANOVA, followed
by the protected least significant difference test.

Results

Body weight

As shown in Fig. 1, undernourished rats gained weight
at a significantly lower rate than normally fed rats.
Ovariectomy increased weight gain in normally fed
rats, but this was not significant. However, ovariectomy
significantly decreased weight gain in undernourished
animals.

Serum IGF-I concentration (RIA)

In intact rats, undernutrition caused a significant
decrease in serum IGF-I concentrations (Fig. 2).

Serum IGF-I concentrations were not affected by
ovariectomy in normally fed rats. However, under-
nourished ovariectomized rats had significantly higher
serum IGF-I concentrations compared with intact
undernourished rats (Fig. 2).

Liver IGF-I mRNA concentration (RNase
protection assay)

Liver IGF-I mRNA concentrations were significantly
decreased by both undernutrition and ovariectomy,
but these effects were not additive (Fig. 3).

Serum IGFBP-1, -2 and -3 concentrations
(Western blot)

Western ligand blots showed that the 30 kDa complex
of IGFBP-1 and -2 was decreased in undernourished
vs fed rats and ovariectomy had no effect (Fig. 4).

Serum IGFBP-3 concentrations were also decreased
in undernourished rats as compared with fed rats and
ovariectomy had no effect (Fig. 4).

Liver IGFBP-1, -2 and -3 mRNA
concentrations (RNase protection assay)

In intact rats, liver IGFBP-1 mRNA concentrations
increased significantly as a result of undernutrition
(fed normally vs undernourished) and ovariectomy
had no effect (fed normally vs ovariectomized and fed
normally) (Fig. 5). In contrast, in ovariectomized
animals undernourishment had no effect on IGFBP-1
mRNA concentrations (ovariectomized and fed
normally vs ovariectomized and undernourished).

Liver IGFBP-2 mRNA concentrations were markedly
higher in undernourished rats compared with fed rats.

Figure 1 Mean^S.D. body weights of rats throughout the study
period. F, fed normally; OVX, ovariectomized (30 days of age);
U, undernourished (beginning at 35 days of age). *Significantly
different from all other groups, n ¼ 6.

Figure 2 Mean^S.D. circulating IGF-I levels as measured by RIA.
F, fed normally; OVX, ovariectomized; U, undernourished.
*P , 0:05; ANOVA, n ¼ 6.

Malnutrition, ovarian hormones and IGF 419EUROPEAN JOURNAL OF ENDOCRINOLOGY (2002) 147

www.eje.org



In normally fed rats, ovariectomy had no effect;
however, undernourished ovariectomized rats had
significantly lower concentrations than intact
undernourished rats (Fig. 5).

Ovariectomy evoked a decrease in liver IGFBP-3
mRNA concentrations in both fed and undernourished
rats (Fig. 5). Liver IGFBP-3 mRNA concentrations were
not altered by undernutrition in either intact or
ovariectomized rats.

Discussion

Linear growth is directly controlled by GH, in part via
IGF-I (26, 27), with other factors such as nutrition
and the hormonal environment playing modulatory
roles (10, 28). To the best of our knowledge, the
effect of malnutrition on the IGF-I system during
puberty has not been reported previously. Since
pubertal transition is coincident with normal changes
in IGF-I, IGFBPs and sex steroid levels (29, 30), the

response to undernutrition could be distinct at this
developmental stage.

Undernutrition, or poor nutrition, inhibits growth in
the laboratory rat (5, 10, 11) and is one of the major
causes of short stature in humans (31, 32). In agree-
ment, we now show that undernutrition of peripubertal
rats significantly reduced body weight, which at this
age is directly proportional to linear growth (33).
Circulating IGF-I and liver IGF-I mRNA levels were
significantly reduced, as reported in adults (5, 6, 8, 9,
25), and this could explain the decreased longitudinal
growth.

Circulating IGFBP levels are also modulated by
malnutrition and catabolic states (1–5, 8, 9, 25).
Adult rats on a calorie-restricted diet have increased
IGFBP-1 and -2 and decreased IGFBP-3 levels, as do
anorexia nervosa patients (2). In poorly controlled
diabetic rats, circulating IGFBP-1 is increased and
IGFBP-3 decreased (3), similar to what is observed in
diabetic humans (1). We found circulating IGFBP-3
concentrations to be reduced, but IGFBP-1 and -2

Figure 3 Mean^S.D. liver IGF-I mRNA levels as measured by RNase protection assay. F, fed normally; OVX, ovariectomized;
U, undernourished. *P , 0:05; ANOVA, n ¼ 6.
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were also significantly decreased. This difference could
be due to the age-dependent response of IGFBPs to
malnutrition (5, 34).

In contrast to the decrease in circulating IGFBP
levels, in undernourished intact rats, liver mRNA
levels for IGFBP-1 and -2 were increased with no
change in IGFBP-3. A similar discrepancy was reported
where protein restriction reduced plasma IGFBP-3 and
-4 levels, but liver mRNA levels did not change (4). This
discordance between changes in protein and mRNA
concentrations could be due to undernutrition
increasing IGFBP clearance or protease activity (6).
Alternatively, the liver may not be the main source of
the changes reported here, as other tissues also produce
IGFBPs (26).

The ovary inhibits systemic growth, at least partially
due to its production of estrogens (19, 28). Although
estrogens are highly effective in blocking the sequelae
of GH overproduction in acromegaly, it has been
shown that they actually stimulate GH secretion in
humans (35). Hence, how can estrogens slow growth
while increasing GH? In effect, estrogen therapy
causes a rapid fall in IGF-I, but not in GH (36),
although this depends on the estrogen dose used (37).
Estrogens stimulate the closing of the epiphyses, as

demonstrated clearly by patients with mutations in
either the estrogen receptor-a or aromatase genes.
Indeed, these patients continued to grow even into
adulthood, due to the lack of estrogen effects and
epiphyseal closure (for review see 38).

In most animal studies ovariectomy is reported to
stimulate both growth and circulating IGF-I levels
(19, 20, 28, 39–41), which is in contrast to the lack
of effect shown here. In our studies rats were castrated
before puberty, so they had not been exposed to normal
post-pubertal levels of ovarian hormones. Therefore,
their response to later hormonal manipulations may
differ from that of adult animals. This may also explain
why we found no effect of ovariectomy on serum
IGFBP-1, -2 or -3 concentrations, while other authors
report changes (4, 41).

Ovariectomy decreased liver IGF mRNA levels, but
not circulating IGF-I levels, suggesting that modulation
of transduction, protein processing or clearance may
also occur. On the other hand, although under
normal circumstances the liver is the main source of
circulating IGF-I, other organs produce substantial
amounts and could influence plasma IGF-I levels.
Indeed, not all tissues have the same response to
ovarian hormone manipulations, with some even

Figure 4 Mean^S.D. circulating IGFBP-1, -2 and -3 levels as measured by Western blot analysis. F, fed normally; OVX, ovariectomized;
U, undernourished. *P , 0:05; ANOVA, n ¼ 6.
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increasing IGF-I expression in response to ovariectomy
(42, 43).

Sex steroids modulate the IGF –GH axis at the level of
the hypothalamus (33, 44, 45), pituitary (46, 47) and
target tissues (19, 42, 43). In addition, the response of
some cells to GH or IGF-I depends on the presence of sex
steroids and vice versa and sex steroid actions on the
GH–IGF-I axis are also age-dependent (48). In rats,
pubertal growth, which occurs between approximately
35 and 45 days of age (28, 33), takes place even in the
absence of the gonads, although to a lesser degree (33),
suggesting that sex steroids are not the only factor
involved in this phenomenon. Furthermore, the
interaction between sex steroids and the GH–IGF-I
axis is different during puberty compared with other
developmental periods (48).

The effect of undernutrition on growth was even
more pronounced in ovariectomized rats, which grew
significantly less than underfed intact animals even
though their circulating IGF-I levels were higher.
Fisher and colleagues (39) reported that circulating
IGF-I levels increased in ovariectomized rats, but were

not affected in ovariectomized and undernourished
animals. In addition, although circulating levels of
IGFBPs remained decreased in undernourished ovari-
ectomized rats, their liver mRNA levels tended to
normalize. In effect, there appears to be a complex
interaction between the effects of ovarian hormones
and malnutrition on the growth axis. Our results
suggest that ovarian hormones may amplify some of
the effects of malnutrition on this system. However,
systemic growth itself was less suppressed in intact
animals, indicating that the end result of these changes
is less affected in the presence of ovarian hormones.

Under conditions of malnutrition the protective
behaviour adopted by the body must be taken into con-
sideration. Although the mechanisms of this phenom-
enon are not well understood, it is accepted that the
organism favors vital functions and organs, such as
the nervous or cardiac systems, over non-vital func-
tions (e.g. reproduction or growth) in situations of
extreme stress. Undernutrition results in a reduction
in longitudinal growth and a ‘shut-down’ of the repro-
ductive axis and, as shown here, removal of ovarian

Figure 5 Mean^S.D. liver IGFBP-1, -2 and -3 mRNA levels as measured by RNase protection assay. F, fed normally; OVX,
ovariectomized; U, undernourished. *P , 0:05; ANOVA, n ¼ 6.
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hormones exaggerates the effect on growth, suggesting
that these two effects are intertwined. Furthermore,
although removal of ovarian hormones further
decreases longitudinal growth, part of the IGF axis
tends to normalize, suggesting that these factors may
be available for other important functions.

In conclusion, these results emphasize the complex
interaction between the GH–IGF axis and gonadal
steroids, emphasizing the possible age-dependent
aspects. Indeed, the effects of malnutrition on systemic
growth may be distinct depending on the pubertal stage
of the subject. It is logical that during periods of more
rapid growth, such as puberty, any assault on this
system could have a more dramatic effect. However,
the adaptive capabilities of the organism may function
to lessen the possible detrimental effects, becoming
more efficient with the limited resources available.
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